Abstract

Schiff base complexes with aza-crown ether pendants have been synthesized and employed as models for hydrolase enzymes by studying the kinetics of their hydrolysis reactions with p-nitrophenyl picolinate (PNPP) in Brij35 surfactant micellar solution. A kinetic model of PNPP cleavage catalyzed by these complexes is proposed. The effects of complex structures and reaction temperature on the rate of catalytic PNPP hydrolysis have also been examined. The rate increases with pH of the buffered Brij35 micellar solution under 25°C; all four complexes exhibited high activity in the catalytic PNPP hydrolysis. The catalytic activity of the phenyl-bridged Schiff base complex is larger than that of ethyl-bridged Schiff base complex for the same substituent and metal. The catalytic activity of manganese(III) complex is superior over cobalt(II) complex in catalyzing hydrolysis of PNPP under the same ligand. The pseudo-first-order rate for PNPP hydrolysis catalyzed by CoL1 containing aza-crown ether is 2.96 × 104 times that of spontaneous hydrolysis of PNPP in Brij35 surfactant micellar solution at pH = 7.60, [S] = 2.0 × 10−4 mol dm−3.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.