Abstract

Precision glass molding (PGM) is an efficient process used for manufacturing high-precision micro lenses with aspheric surfaces, which are key components in high-resolution systems, such as endoscopes. In PGM, production costs are significantly influenced by the lifetimes of elaborately manufactured molding tools. Protective coatings are applied to the molding tools to withstand severe cyclic thermochemical and thermomechanical loads in the PGM process and, in this way, extend the life of the molding tools. This research focuses on a new method which combines metallographic analysis and finite element method (FEM) simulation to study the interaction of three protective coatings—diamond-like carbon (DLC), PtIr and CrAlN—each in contact with the high Abbe number glass material S-FPM3 in a precision glass molding process. Molding tools are analyzed metallographically using light microscopy, white light interferometry, scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX). The results show that the DLC coating improved process durability more than the PtIr and CrAlN coatings, in which the phenomenon of coating delamination and glass adhesion can be observed. To identify potential explanations for the metrological results, FEM is applied to inspect the stress state and stress distribution in the molding tools during the molding process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.