Abstract

Astaxanthin (AST) is a fat-soluble and non-vitamin A source of carotenoid that can quench reactive oxygen species and it has strong antioxidant and anti-inflammatory abilities. Herein, we have used H2O2 to establish a model of oxidative damage to RAW 264.7 cells and cells treated with vitamin C as the positive control group. The changes in metabolome were examined using 1H NMR and the results demonstrated that H2O2 treatment and various metabolic pathways such as amino acid, glucose, and glycerolipid metabolism were downregulated, which in turn affected citric acid cycle and energy status. AST could reverse downregulation of some of these metabolic pathways to a certain extent, and reduce cellular oxidative stress and death. The AST group differed from the vitamin C group in regulating d-glutamine, d-glutamic acid, pyruvate, and glycerolipid metabolism. The experimental results help to further understand the antioxidant effects of AST.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call