Abstract

Xylanase XynG1-1 from Paenibacillus campinasensis G1-1 consists of a catalytic domain (CD), a family 6_36 carbohydrate-binding module which is a xylan-binding domain (XBD), and a linker sequence (LS)between them. The structure of XynG1-3 from Bacillus pumilus G1-3 consists only of a CD. To investigate the functions and properties of the XBD and LS of XynG1-1, two truncated forms (XynG1-1CDL, XynG1-1CD) and three fusion derivatives (XynG1-3CDL, XynG1-3CDX and XynG1-3CDLX) were constructed and biochemically characterized. The optimum conditions for the catalytic activity of mutants of XynG1-1 and XynG1-3 were 60 °C and pH 7.0, and 55 °C and pH 8.0, respectively, the same as for the corresponding wild-type enzymes. XynGs with an XBD were stable over a broad temperature (30-80 °C)and pH range (4.0-11.0), respectively, on incubation for 3 h. Kinetic parameters (Km, kcat, kcat/Km) of XynGs were determined with soluble birchwood xylan and insoluble oat spelt xylan as substrates. XynGs with the XBD showed better affinities toward, and more efficient catalysis of hydrolysis of the insoluble substrate. The XBD had positive effects on thermostability and pH stability and a crucial function in the ability of the enzyme to bind and hydrolyze insoluble substrate. The LS had little effect on the overall stability of the xylanase and no relationship with affinities for soluble and insoluble substrates or catalytic efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.