Abstract

As a fast developing alternative of traditional therapeutics, photodynamic therapy (PDT) is an effective, noninvasive, nontoxic therapeutics for cancer, senile macular degeneration, and so on. But the efficacy of PDT was compromised by insufficient selectivity and low solubility. In this study, novel multifunctional silica-based magnetic nanoparticles (SMNPs) were strategically designed and prepared as targeting drug delivery system to achieve higher specificity and better solubility. 2,7,12,18-Tetramethyl-3,8-di-(1-propoxyethyl)-13,17-bis-(3-hydroxypropyl) porphyrin, shorted as PHPP, was used as photosensitizer, which was first synthesized by our lab with good PDT effects. Magnetite nanoparticles (Fe3O4) and PHPP were incorporated into silica nanoparticles by microemulsion and sol–gel methods. The prepared nanoparticles were characterized by transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy and fluorescence spectroscopy. The nanoparticles were approximately spherical with 20–30 nm diameter. Intense fluorescence of PHPP was monitored in the cytoplasm of SW480 cells. The nanoparticles possessed good biocompatibility and could generate singlet oxygen to cause remarkable photodynamic anti-tumor effects. These suggested that PHPP-SMNPs had great potential as effective drug delivery system in targeting photodynamic therapy, diagnostic magnetic resonance imaging and magnetic hyperthermia therapy.

Highlights

  • Photodynamic therapy (PDT) is an effective, noninvasive and nontoxic therapeutics for cancer, senile macular degeneration, actinic keratosis, port-wine stains, rheumatoid arthritis, and so on [1, 2]

  • The investigation of PS encapsulated magnetic silica nanoparticles (SMNPs) showed efficient cellular uptake [14] and obvious generation of singlet oxygen in vitro [15, 16], which indicated the potential of silica-based magnetic nanoparticles (SMNPs) as targeting drug delivery system

  • The generation of singlet oxygen was monitored by RNO bleaching assay, and the photodynamic efficacy of the SMNPs to SW480 colon carcinoma cells was detected by MTT assay (Scheme 1)

Read more

Summary

Introduction

Photodynamic therapy (PDT) is an effective, noninvasive and nontoxic therapeutics for cancer, senile macular degeneration, actinic keratosis, port-wine stains, rheumatoid arthritis, and so on [1, 2]. Keywords Targeting photodynamic therapy Á Photosensitizer Á Silica Á Magnetic nanoparticles Á Tumor The investigation of PS encapsulated magnetic silica nanoparticles (SMNPs) showed efficient cellular uptake [14] and obvious generation of singlet oxygen in vitro [15, 16], which indicated the potential of SMNPs as targeting drug delivery system.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call