Abstract

Titanium metal bodies have been prepared from the sintered powder compacts of TiO2 by a novel molten salt electrochemical approach, known as FFC Cambridge process. The phase and compositional characterizations of both Ti and TiO2 have been carried out by X-ray diffraction. The pore morphologies of sintered TiO2 pellet and the metallic Ti pellet, obtained after electrochemical reduction have been studied by SANS over a scattering wave vector q range of 0.003–3.5 nm−1 using a double crystal diffractometer and a pin-hole collimated SANS instrument. In the case of reduced metal pellet, average pore size was found to be larger than that of the oxide pellet as the voids left behind after the oxygen atoms left the oxide matrix, could not coalesce.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.