Abstract

The principle and process of parallel seismic (PS) testing for the integrity testing of cemented soil columns are introduced in this paper. A three-dimensional (3D) finite element model (FEM) for the pile-soil system is established for impulse responses. Under saturated soil or unsaturated soil condition, several vibrating velocity-time histories at different depths in parallel hole are obtained based on the numerical simulation. It shows that the length of the pile and the one-dimensional (1D) P-wave velocity in the pile can be determined easily from the features of the mentioned velocity-time histories. By examining the slopes of the first arrival time plotted versus depth or the depth where the amplitude of the first arrival significantly decreases, the length of the pile can be determined. The effects of the 3D P-wave propagation through the saturated soil and the defect of the cemented soil column on the velocity-time histories are also investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.