Abstract

Optimization of silica nanoparticles (SNPs) dosage in cementitious system was carried out analytically as well as experimentally by understanding the early stage hydration reaction of tricalcium silicate (C3S). XRD and TGA results show the maximum nucleation effect of SNPs at 8 h, when the rate of product formation was higher than the control (∼66% additional CSH and ∼61% more CH with 10% SNPs addition). While at 24 h of hydration, ∼25% additional CSH was formed and CH content reduced by ∼32% with 10% addition showing the pozzolanic effect of SNPs. Further, FTIR results reveal that SNPs accelerate the polymerization in silicate chain and with 10% SNPs addition more crystalline (probably tobermorite like) structure is formed. This is responsible for the formation of highly compact and dense microstructure at 24 h as observed in electron micrographs, which may be responsible for the slow hydration rate at later age. XRD, FTIR and TGA studies on C3S revealed that up to 5% addition of SNPs is beneficial, whereas higher dosages do not contribute significantly. Based on these investigations, studies were performed on cement paste, mortar and concrete samples, which revealed that 2–3% addition of SNPs is the optimum quantity for significant contribution in strength properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.