Abstract

The Co1−xMnxFe2O4 (0≤x≤0.5) spinel ferrite thin films were deposited on quartz substrates by chemical spray pyrolysis technique. The effect of Mn substitution on to the structural, electrical, dielectric and NO2 gas sensing properties of cobalt ferrite thin films was studied. The X-ray diffraction analysis reveals that deposited films exhibit spinel cubic crystal structure. The lattice constant increases with the increase in Mn2+ content. The decrease in resistivity with increase in temperature suggests that the films have a semiconducting nature. The room temperature dielectric properties such as dielectric constant (ε′), loss tangent (tanδ), dielectric loss (ε′′) and AC conductivity have been studied in the frequency range 20Hz–1MHz. The film shows the highest sensor response at moderately low (150°C) operating temperature. The effect of operating temperature, gas concentration, film selectivity and substitution of Mn on to gas response is carefully studied. The manganese substituted cobalt ferrite films are extremely selective towards NO2 with a 20 times gas response compared with other gases. The gas response achieved nearly 92% of its initial value after 150 days, indicating good stability of the films.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call