Abstract

NADPH-cytochrome c reductase has been isolated from a top-fermenting ale yeast, Saccharomyces cerevisiae (Narragansett strain), after ca. a 240-fold purification over the initial extract of an acetone powder, with a final specific activity (at pH 7.6, 30 °C) of ca. 150 μmol cytochrome c reduced min −1mg −1 protein. The preparation appears to be homogeneous by the criteria of: sedimentation velocity; electrophoresis on cellulose acetate in buffers above neutrality; and by polyacrylamide gel electrophoresis. Although the reductase appeared to partially separate into species “A” and “B” on DEAE-cellulose at pH 8.8, the two species have proven to be indistinguishable electrophoretically (above pH 8) and by sedimentation. By sedimentation equilibrium at 20 °C, a molecular weight of ca. 6.8 (± 0.4) × 10 4 was obtained with use of a V ̄ 20 ° = 0.741 calculated from its amino acid composition. After disruption in 4 m guanidinium chloride- 10 m m dithioerythritol- 1 m m EDTA, pH 6.4 at 20 °C, an M ̄ r of 3.4 (± 0.1) × 10 4 resulted, which points to a subunit structure of two polypeptide chains per mole. Confirmatory evidence of the two-subunit structure with similar, if not identical, polypeptide chains was obtained by polyacrylamide gel electrophoresis in dodecyl-sulfate, after disruption in 4 m urea and 2% sodium dodecyl sulfate, and yielded a subunit molecular weight of ca. 4 × 10 4. Sulfhydryl group titration with 4,4′-dithiodipyridine under acidic conditions revealed one sulfhydryl group per monomer, which apparently is necessary for the catalytic reduction of cytochrome c. NADPH, as well as FAD, protects this-SH group from reaction with 5,5′-dithiobis (2-nitrobenzoate). The visible absorption spectrum of the oxidized enzyme (as prepared) has absorption maxima at 383 and 455 nm, typical of a flavoprotein. Flavin analysis (after dissociation by thermal denaturation of the “A” protein) conducted fluorometrically, revealed the presence of 2.0 mol of FAD per 70,000 g, in confirmation of the deduced subunit structure. The identity of the FAD dissociated from either “A” or “B” protein was confirmed by recombination with apo- d-amino acid oxidase and by thin-layer chromatography. A kinetic approach was used to estimate the dissociation constant for either FAD or FMN (which also yields a catalytically active enzyme) to the apoprotein reductase at 30 °C and pH 7.6 (0.05 m phosphate) and yielded values of 4.7 × 10 −8 m for FAD and 4.4 × 10 −8 m for FMN.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call