Abstract

Starch from AC Hill oat grains ( Avena nuda) was isolated and some of the characteristics determined. The yield of starch was 23·4% on a whole grain basis. The shape of the granule was polyhedral to irregular, with granules 6–10 μm in diameter. Lipids were extracted by acid hydrolysis and by selective solvent extraction with chloroform-methanol 2:1 v/v (CM) at ambient temperature, followed by n-propanol-water 3:1 v/v (PW) at 90–100°C. The acid hydrolyzed extracts which represented the total starch lipids (TSL) was 1·13%. The free lipids in the CM extract (1% TSL) was 6·2%, whereas the free and bound lipids in the PW extracts was 93.0%. Neutral lipids formed the major lipid class in the CM and PW extracts. The monoacyl lipid content in both CM and PW extracts was 61·0%. The total amylose content was 19·4%, of which 13·9% was complexed by native lipids. X-ray diffraction was of the ‘A’ type. Oat starch differed from wheat starch in showing a higher swelling factor, decreased amylose leaching, coleaching of a branched starch component and amylose during the pasting process, higher peak viscosity and set-back, low gel rigidity, greater susceptibility towards acid hydrolysis, greater resistance to α-amylase action and a higher freeze-thaw stability. Furthermore, in comparison to wheat starch, the amylose chains of oat starch appear to be more loosely arranged in the amorphous regions, whereas in crystalline regions, oat starch chains are more compactly packed. Lipid removal from oat and wheat starches decreased their swelling factor, peak viscosity, set-back, gelatinization temperatures, freeze-thaw stability and paste clarity (at pH > 4·0), and increased their thermal stability, amylose leaching, enthalpy of gelatinization, susceptibility towards α-amylase and paste clarity (at pH < 4·0). The results also showed that the properties of AC Hill oat starch is not representative of oat starch in general.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.