Abstract

The paper is devoted to studies on the influence of the sodium void reactivity effect (SVRE) on the safety and technical and economical characteristics of the BN-1200-type reactor. Different core options are considered for application to this reactor. These core options differ in design, dimensions, and, hence, SVRE value. It is shown by the analysis that the most flattened core with sodium plenum at the top assures reactor self-protection under beyond-design-basis accident conditions. Sodium plenum abandonment and core height increase causing an SVRE value increase deteriorate reactor self-protection, but at the same time, improve some technical and economical characteristics of the reactor. Self-protection means the possibility to avoid rapid core meltdown under conditions of the above-listed beyond-design accidents. The possibility of controlling beyond-design accidents (for instance, by restoring the power supply of the main pumps in a rather short time) is taken into account. Issues of choosing the optimal core design under these conditions are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.