Abstract

The hydrolysis of tetraethoxysilane using the sol-gel process was used to produce silica matrices, and these were tested for the immobilization of lipase from Candida rugosa by three methods: physical adsorption, covalent binding, and gel entrapment in the presence and absence of polyethylene glycol (PEG-1450). The silica matrices and their derivatives were characterized regarding particle size distribution, specific surface area, pore size distribution (Brunauer, Emmett, and Teller [B.E.T.] method), yield of grafting (thermogravimetric analyzer [TGA]), and chemical composition (Fourier transform infrared). Immobilization yields based on recovered lipase activity varied from 3.0 to 32.0%, and the highest efficiency was attained when lipase was encapsulated in the presence of PEG.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call