Abstract

To explore and develop scaffold for bone regeneration or tissue engineering with the capacity of controlled drug delivery, the feasibility of hydroxyapatite/polyurethane (HA/PU) scaffold containing drug-loaded microspheres for controlled drug delivery system was demonstrated. Ciprofloxacin hydrochlorid as a model drug was encapsulated in ethyl cellulose (EC) microspheres, which were subsequently incorporated into HA/PU composite scaffold to generate an antibiotic drug delivery system. The results show that EC microspheres are uniformly distributed in the HA/PU scaffold matrix and display no significant effect on the pore structure of the scaffold. Compared with incorporating ciprofloxacin hydrochlorid into scaffolds directly, embedding microspheres into scaffolds significantly reduces the initial burst drug release and extends the release time of drug delivery. In vitro drug delivery tests and antibacterial activity tests prove that drug-loaded microsphere/scaffold system has good drug delivery properties and effective antibacterial properties. These results suggest that the novel drug-loaded microsphere/ scaffold composites developed in this study is a good candidate scaffold with the function of bone repair and infection treatment for bone tissue engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.