Abstract

Aliesterase, carboxylesterase, and phosphorotriester hydrolase activities in six house fly strains were studied in relation to malathion resistance. Selection of two susceptible strains with malathion for three generations resulted in an increase in both carboxylesterase activity and LD 50 of malathion, indicating that the increased detoxication by the enzyme was the major mechanism selected for malathion resistance. With the highly resistant strains, however, the carboxylesterase activity alone was not sufficient to explain the resistance level, and the involvement of additional mechanisms, including phosphorotriester hydrolase activity, was suggested. The E 1 strain, which had high phosphorotriester hydrolase activity but normal or low carboxylesterase activity, showed a moderate level, i.e., sevenfold resistance. Upon DEAE-cellulose chromatography, two or three esterase peaks were resolved from susceptible, moderately resistant, and highly resistant strains. The substrate specificity, the sensitivity to paraoxon inhibition, and the α β ratio of malathion hydrolysis were studied for each esterase peak from the different strains. The results suggested the existence of multiple forms of esterases with overlapping substrate specificity in the house fly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.