Abstract
An energy term, representing the N-H...O type of hydrogen bond, which is a function of the hydrogen bond length (R) and angle (theta) has been introduced in an energy minimization program, taking into consideration its interpolation with the non-bonded energy for borderline values of R and theta. The details of the mathematical formulation of the derivatives of the hydrogen bond function as applicable to the energy minimization have been given. The minimization technique has been applied to hydrogen bonded two and three linked peptide units (gamma-turns and beta-turns), and having Gly, Ala and Pro side chains. Some of the conformational highlights of the resulting minimum energy conformations are a) the occurrence of the expected 4----1 hydrogen bond in all of the burn-turn tripeptide sequences and b) the presence of an additional 3----1 hydrogen bond in some of the type I and II tripeptides with the hydrogen bonding scheme in such type I beta-turns occurring in a bifurcated form. These and other conformational features have been discussed in the light of experimental evidence and theoretical predictions of other workers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.