Abstract

The objective of this investigation is to examine the buoyancy-driven gravitational spreading currents, especially as applied to ocean disposal of wastewater and the accidental release of hazardous fluids, such as liquefied natural gas. A series of asymptotic solutions are used to describe the displacement of a gravitationally driven spreading front during an inertial phase of motion and the subsequent viscous phase. Solutions are derived by a force scale analysis and a self-similar technique for flows in stagnant, homogeneous, or linearly density-stratified environments. The self-similar solutions for inertial-buoyancy currents are found using an analogy to the well-known shallow-water wave propagation equations and also to those applicable to a blast wave in gasdynamics. For the viscous-buoyancy currents the analogy is to the viscous long wave approximation to a nonlinear diffusive wave, or thermal wave propagation. Other similarity solutions describing the initial stage of motion of the flow formed by the collapse of a finite volume fluid are developed by analogy to the expansion of a gas cloud into a vacuum. For the case of a continuous discharge there is initially a starting jet flow followed by the buoyancy-driven spreading flow. The jet mixing zone in such flows is described using Prandtl's mixing length theory. Dimensional analysis is used to derive the relevant scaling factors describing these flows.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.