Abstract
The present study deals with several issues involving the improvement of physical submodels and the computational efficiency in modeling dense fuel sprays. To improve the computational efficiency, a parcel PDF approach is implemented which can account for turbulent dispersion within each computational parcel. The advantage of a parcel PDF tracking method is to reduce the number of computational parcels representing the spray dynamics as well as to obtain grid-independent solutions for two-phase flows. To account for the dense spray effects, an existing drop collision and coalescence model, two breakup models, and a Reitz's wave instability model were used. These models were incorporated into a state-of-the-art multiphase all-speed transient flow solution procedure. Comparative performance for two breakup models as well as the turbulence modulation effects are also studied. Validation cases include the nonevaporating and evaporating solid-cone dense sprays. The predictions show a reasonably good agreement with available experimental results in terms of spray penetration, drop sizes, gas and drop mean velocities, and gas and drop rms velocities. The numerical results indicate that the present parcel PDF model has the capability of accurately representing drop dispersion in dense sprays with manageable number of computational parcels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.