Abstract

The joining of dissimilar AA2024 and AA6061 aluminium plates of 5mm thickness was carried out by friction stir welding (FSW) technique. Optimum process parameters were obtained for joints using statistical approach. Five different tool designs have been employed to analyse the influence of rotation speed and traverse speed over the microstructural and tensile properties. In FSW technique, the process of welding of the base material, well below it's melting temperature, has opened up new trends in producing efficient dissimilar joints. Effect of welding speed on microstructures, hardness distribution and tensile properties of the welded joints were investigated. By varying the process parameters, defect free and high efficiency welded joints were produced. The ratio between tool shoulder diameter and pin diameter is the most dominant factor. From microstructural analysis it is evident that the material placed on the advancing side dominates the nugget region. The hardness in the HAZ of 6061 was found to be minimum, where the welded joints failed during the tensile studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call