Abstract

Application of nanoparticles provides an effective way of improving heat transfer characteristics of fluids. Particles less than 100 nm in diameter exhibit different properties from those of conventional solids. Compared with micron-sized particles, nanophase powders have much larger relative surface areas and a great potential for heat transfer enhancement. Some researchers tried to suspend nanoparticles into fluids to form high effective heat transfer fluids. Some preliminary experimental results showed that increase in thermal conductivity of approximately 60% can be obtained for some nanofluids consisting of water and 5 vol% CuO nanoparticles. So, the thermal conductivity of nanofluid was found to be strongly dependent on the nanoparticle volume fraction. So far it has been an unsolved problem to develop a sophisticated theory to predict thermal conductivity of nanofluids, although there are some semi empirical correlations to calculate the apparent conductivity of two-phase mixture. In this article, several correlations for predicting the nanofluid thermal conductivity will be compared and results will be discussed for three water based nanofluids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call