Abstract

Bis(propylenediamine)metal perchlorate (BPMP) complexes like [M(pn)2](ClO4)2 (where M=Cr, Mn, Ni, Cu, Zn and pn=propylenediamine) have been prepared and characterized by gravimetric methods, infrared and elemental analysis. Thermal properties have been studied using simultaneous thermogravimetry-differential thermal analysis in atmospheres of nitrogen and air to examine the effect of atmospheric change on thermal decomposition of these complexes. Changing of the atmosphere does not cause any measurable changes in the decomposition of complexes. However, as indicated by thermoanalytical techniques, the thermal stability of present complexes decreases in the order: [Cr(pn)2](ClO4)2>[Mn(pn)2](ClO4)2>[Zn(pn)2](ClO4)2>[Ni(pn)2](ClO4)2>[Cu(pn)2](ClO4)2. Isothermal thermogravimetry, over the temperature range of decomposition has been done for all the complexes. An analysis of the kinetics of thermal decomposition was made using a model fitting procedure as well as an isoconversional method, independent of any model. The results of both kinetic approaches have been discussed critically. The explosion delay (DE) was measured to investigate the trend of rapid thermal analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call