Abstract

This study is focused on the impact of certain important geometric parameters on cooling effectiveness and coolant consumption for effusion cooling of aircraft combustor liner. The three dimensional turbulent flow field in a domain representing the combustor with several rows of effusion coolant injection is considered for the analysis. The geometric parameters considered are: angle of injection of the coolant, axial and transverse pitch of the injection holes, hole spacing and hole diameter. Also, based on the analysis of the temperature field within the chamber, a novel concept of ‘variable hole diameter’ has been introduced to reduce coolant consumption. A symmetric 3D computational model including the combustion chamber, coolant chamber and the effusion plate was used for the study. Conjugate heat transfer was modeled between the effusion-cooled wall and the two chambers. A detailed mass flow rate analysis has been performed for the various cases in order to study the impact of parameters on coolant consumption. The proposed approach of using an effusion plate with variable hole diameters is found to be effective in reducing the net coolant consumption significantly while maintaining a given level of cooling effectiveness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.