Abstract

Electroless Nickel-Phosphorus deposits with phosphorus content of 4.35, 5.45, 6.80, 8.10 and 9.12 Wt.% P were made, on mild steel substrates. The deposits were annealed at 60, 100, 200, 300, 330, 360, 400 and 600°C for 2 hours. The crystallization process of these deposits was studied using X-ray line profile analysis, differential scanning calorimetry and microhardness. The X-ray diffraction pattern of all the deposits indicated the presence of crystalline and amorphous phases coexisting in the as deposited condition. The lattice disorder in the crystalline phase increased with increasing phosphorus content. Profile refinement techniques have been used to separate the crystalline nickel (111) reflection from the amorphous profile. The separated (111) and (222) profiles of nickel were used for crystallite size and microstrain analysis. The crystallite size of nickel was found to vary from 50Å in the as deposited condition to about 600Å in the fully annealed state (400°C). The crystallite size increased sharply above 300°C, indicating the onset of precipitation. The microhardness values showed typical precipitation hardening type of behavior, increasing from an initial value of about 450 VHN in the as deposited state to the peak hardness of about 825 to 950 VHN, corresponding to a temperature range of 360 to 400°C. Differential scanning calorimetry of these deposits, indicated only one major reaction between 325 to 375°C. Ni 3P has been identified as the final stable precipitate at 600°C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.