Abstract

The current study deals with Cr(VI) removal by nanotitania under fluorescent light and dark conditions. The equilibrium removal capacities, 85.85 and 59.4 mg of Cr(VI) g−1 of nanoparticle were noted for nanotitania interacted under light and dark conditions, respectively, at optimized conditions (pH: 7.0, contact time: 30 min, initial Cr(VI) concentration: 20 mg l−1, nanoparticle dosage: 0.1 g l−1). Under both the conditions, the equilibrium removal data fitted well with the Langmuir isotherm model. The nanotitania followed a second-order kinetics under light condition whereas a pseudo-second-order kinetics was observed under dark condition. The surface characterization of nanotitania was carried out by zeta potential measurement and transmission electron microscope (TEM). Fourier transform infrared (FT-IR) studies carried out under light and dark conditions indicate the interaction of surface functional groups to Cr(VI). Cr(VI) removal study carried out in the Cr(VI)–Cr(III) mixture showed a decrease in Cr(VI) removal capacity with increase in Cr(III) concentration. A 92% regeneration of nanoparticle was observed indicating efficient reusability of the system. The applicability of the nanotitania in Cr(VI) contaminated water was studied by spiking Cr(VI) in natural water matrices like ground water and lake water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.