Abstract

The ground freezing construction technique is one of the most effective and widely applied site construction methods in soft soil areas, like Shanghai. Some elevation-inclined refrigeration pipes are arranged for the artificial freezing excavation of the Pudong-side first-storey connection aisle, which is designed to connect two adjacent tunnel lanes of Shanghai East-Fuxing-Road tunnel project. No advanced research results could be found for computing the temperature field of tunnels and aisles frozen with inclined refrigeration pipes. Anyhow the computation of the relevant temperature field is of high importance for the safe and economical excavation of the above-mentioned aisle. In this paper, a method for computing the aisle temperature field using 3D FEM is given, and the computation accuracy is verified by contrasting the computed and site measured results. The back propagation neural networks are also applied to the temperature prediction using self-developed Neural Network-Expert System software, the predicted results are also very satisfactory. The mechanism during freezing and aisle excavation will be discussed on the basis of 3D FEM simulation. The authors believe that studying the parameter-sensitivity of temperature field is very important for the optimum selection of parameter values. So, in this paper, the parameter-sensitivity of temperature field is also discussed. In order to obtain the optimum frozen wall thickness, the relation between the frozen wall thickness and the initial freezing brine temperature is studied. At the end, an excavation pre-control plan is proposed by means of fuzzy logic theory for improving the excavation safety. The research result of the current paper is very helpful for projects that will be excavated by freezing construction technique.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call