Abstract

Abstract In this article, we present a new method for converting the boundary value problems for impulsive fractional differential systems involved with the Riemann-Liouville type derivatives to integral systems, some existence results for solutions of a class of boundary value problems for nonlinear impulsive fractional differential systems at resonance case and non-resonance case are established respectively. Our analysis relies on the well known Schauder’s fixed point theorem and coincidence degree theory. Examples are given to illustrate main results. This paper is motivated by [Solvability of multi-point boundary value problem of nonlinear impulsive fractional differential equation at resonance, Electron. J. Qual. Theory Differ. Equ. 89(2011), 1-19], [Existence result for boundary value problem of nonlinear impulsive fractional differential equation at resonance, J, Appl, Math, Comput. 39(2012) 421-443] and [Solvability for a coupled system of fractional differential equations with impulses at resonance, Bound. Value Probl. 2013, 2013: 80].

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call