Abstract

Positive health effects of tea (Camellia sinensis) on a wide range of physiological problems and diseases are well known and are in part due to its copious antioxidant content. The effect of black tea extract (BTE), which is rich in polyphenolic antioxidants, against the consequences of radiation exposure has not been properly identified. The functional properties of BTE were analyzed and its radioprotective effect on V79 cells was explored in the present study. BTE scavenged free radicals and inhibited Fenton reaction-mediated 2-deoxyribose degradation and lipid peroxidation in a dose-dependent fashion, establishing its antioxidant properties. The radioprotective effects of BTE on strand break induction in pBR322 plasmid DNA were 100 % at 80 μg/ml and higher. In V79 cells, BTE was effective in decreasing the frequency of radiation-induced micronucleated cells and the yields of reactive oxygen species (ROS) and also in restoring the integrity of cellular mitochondrial membrane potential significantly. BTE exerted maximum protection against radiation-induced damage in V79 at a dose of 5 μg/ml. Due to the functional properties of BTE-flavonoids, which have been identified by HPLC, it is envisaged that the key player in radioprotection is elimination of ROS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.