Abstract
AbstractThe existence of a specific intermolecular hydrogen‐bonding interaction between poly(3‐hydroxybutyrate‐co‐3‐hydroxyhexanoate) [P(3HB‐co‐3HH)] and (+)‐catechin in their blends was demonstrated by Fourier‐transform infrared spectroscopy (FT‐IR). It was found that the experimentally estimated fraction of hydrogen‐bonded carbonyl groups was much lower than the theoretically predicted maximum fraction. Only one glass transition temperature (Tg) occurred in the blends with the compositions detected by differential scanning calorimetry (DSC), being further confirmed by the results of dynamic mechanical thermal analysis (DMTA). The decrease of the melting point (Tm) and the increase of the glass transition temperature of the blends observed by the DSC measurements also suggested the existence of a strong intermolecular interaction. It was interesting to note that, as a low‐molecular‐weight compound, catechin showed a glass transition, which arises from strong self‐association. As expected, the crystalline structure of P(3HB‐co‐3HH) in the blends showed no change, but the crystallinity of the copolymer component in the blends, calculated by wide‐angle X‐ray diffraction, decreased with the increase of catechin weight content. Investigated by tensile experiments, the maximum strength and modulus decreased sharply with the increase of catechin content; on the contrary, the elongation changed slowly.The FT‐IR spectra in the wave‐number 1 680–1 780 cm−1 region for blends of P(3HB‐co‐3HH)/catechin. A: HBH; B: HBHC10; C: HBHC20; D: HBHC30; E: HBHC40; F: HBHC50; and G: catechin.magnified imageThe FT‐IR spectra in the wave‐number 1 680–1 780 cm−1 region for blends of P(3HB‐co‐3HH)/catechin. A: HBH; B: HBHC10; C: HBHC20; D: HBHC30; E: HBHC40; F: HBHC50; and G: catechin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.