Abstract

Bicarbonate transport plays a role in aqueous humor (AH) secretion. The authors examined bicarbonate transport mechanisms and carbonic anhydrase (CA) in porcine nonpigmented ciliary epithelium (NPE). Cytoplasmic pH (pH(i)) was measured in cultured porcine NPE loaded with BCECF. Anion exchanger (AE), sodium bicarbonate cotransporter (NBC), and CA were examined by RT-PCR and immunolocalization. AH secretion was measured in the intact porcine eye using a fluorescein dilution technique. Anion exchanger AE2, CAII, and CAIV were abundant in the NPE layer. In cultured NPE superfused with a CO(2)/HCO(3)(-)-free HEPES buffer, exposure to a CO(2)/HCO(3)(-)-containing buffer caused rapid acidification followed by a gradual increase in pH(i). Subsequent removal of CO(2)/HCO(3)(-) with HEPES buffer caused rapid alkalinization followed by a gradual decrease in pH(i). The rate of gradual alkalinization after the addition of HCO(3)(-)/CO(2) was inhibited by sodium-free conditions, DIDS, and the CA inhibitors acetazolamide and methazolamide but not by the Na-H exchange inhibitor dimethylamiloride or low-chloride buffer. The phase of gradual acidification after removal of HCO(3)(-)/CO(2) was inhibited by DIDS, acetazolamide, methazolamide, and low-chloride buffer. DIDS reduced baseline pH(i). In the intact eye, DIDS and acetazolamide reduced AH secretion by 25% and 44%, respectively. The results suggest the NPE uses a Na(+)-HCO(3)(-) cotransporter to import bicarbonate and a Cl(-)/HCO(3)(-) exchanger to export bicarbonate. CA influences the rate of bicarbonate transport. AE2, CAII, and CAIV are enriched in the NPE layer of the ciliary body, and their coordinated function may contribute to AH secretion by effecting bicarbonate transport into the eye.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.