Abstract

In the course of our exploration for a novel cephalosporin derivative having excellent antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA), we modified the C-3 linked spacers of cephem derivatives bearing a 1-methylimidazo[1,2-b]pyridazinium-6-yl group at the C-3' position and 2-(5-amino-1,2,4-thiadiazol-3-yl)-2(Z)-cyclopentyloxy-iminoacetyl group at the C-7 position. The optimal spacers were the (E)-2-vinyl and (E)-2-thiovinyl groups seen in 19a and 29aa, respectively. Their anti-MRSA activity was 16 to 32 times as potent as that of cefozopran (CZOP). Focusing on the (E)-2-vinyl and (E)-2-thiovinyl spacers, we further modified the alkoxyimino groups in the C-7 acyl moiety and the 1-alkylimidazo[1,2-b]pyridazinium moieties at the C-3' position and investigated the structure-activity relationships (SAR) of the derivatives. Consequently, we selected 7beta-[2-(5-amino-1,2,4-thiadiazol-3-yl)-2(Z)-fluoromethoxyiminoacetamido]-3-[(E)-2-(1-methylimidazo[1,2-b]pyridazinium-6-yl)thiovinyl]-3-cephem-4-carboxylate (29ca) as a new anti-MRSA parenteral cephalosporin candidate for further biological evaluation. The selected 29ca showed anti-MRSA activity comparable to that of vancomycin (VCM) both in vitro and in vivo, high affinity (IC50)=2.7 microg/ml) for penicillin binding protein 2' (PBP2') of MRSA and potent activity against Gram-negative bacteria as well.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.