Abstract

Different biopolymers, agar, cellulose, alginate, psyllium gaur gum, and bacterial exopolysaccharide (EPS) powders were amended to check their efficacy in enhancing maximum water holding capacity (MWHC), permanent wilting point (PWP), and germination and seedling growth of the Gossypium herbaceum in a laboratory scale. The efficacy of all biopolymers for enhancement of MWHC, PWP, and growth was also analyzed by measuring organic carbon, organic matter, total nitrogen, respiration rate, and microflora in amended and control sandy loams. The range of concentrations (0.2-2%) of all biopolymers was incorporated in sandy loam containing pots. The soil without polymer was considered as control. The psyllium (0.6%) and bacterial EPS (1%) amended soil has 242 and 233% increase in MWHC and thus delaying in the permanent wilting point by 108 and 84 h at 37 °C, respectively, as compared to control. All biopolymers found to increase more or less MWHC, organic matter, total nitrogen, microflora, and PWP as compared to control. The psyllium and bacterial EPS show the highest increase organic matter, biomass, and microflora. The highest reduction in MWHC after 12 weeks were observed in cellulose, gaur gum, and alginate; besides, psyllium, bacterial EPS, and agar showed comparatively less reduction MWHC, i.e., 24% and 14.5%, respectively. The toxicity studies of biopolymer were carried out on earthworm (Eisenia foetida). It revealed their nontoxic nature. The biopolymer amendment in sandy loam can be an effective strategy to improved soil texture, fertility, and thereby crop yield.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call