Abstract

AbstractSulfur removal using adsorption requires a proper process parametric study to determine its optimal performance characteristics. In this study, response surface methodology was employed for sulfur removal from model oil (dibenzothiophene; DBT dissolved in iso‐octane) using commercial activated carbon (CAC) as an adsorbent. Experiments were carried out as per central composite design with four input parameters such as initial concentration (C0: 100–900 mg/L), adsorbent dosage (m: 2–22 g/L), time of adsorption (t: 15–735 min), and temperature (T: 10–50°C). Regression analysis showed good fit of the experimental data to the second‐order polynomial model with coefficient of determination R2‐value of 0.9390 and Fisher F‐value of 16.5. The highest removal of sulfur by CAC was obtained with m = 20 g/L, t = 6 h, and T = 30°C.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call