Abstract

Using a novel technique of measuring absolute ac losses at radio frequencies, the temperature, magnetic field and angle dependence of rf losses in superconducting single crystals of Bi 2Sr 2CaCu 2O 8 is studied. An unexpected, larger than normal state ac loss is observed below T c. We provide an explanation for this observation in terms of the energy required to decouple the intrinsic Josephson junctions in the crystals. The studies are carried out both at zero magnetic field and at different values of magnetic fields applied at different angles θ between the field and the c-axis of the crystal. We observe two maxima in ac loss as a function of temperature. The amplitude, width and the position of the first maximum (peak A) change with the magnitude and orientation of the applied magnetic field. These results are discussed in terms of the critical current density of the Josephson junctions, which decreases with the increasing field and changes with the orientation. The second maximum (peak B) appears just below T c only in the presence of the magnetic field and has been attributed to the vortex motion. The amplitude of this peak as well changes with the magnetic field and with the angle of orientation. The analysis shows that the loss is due to pancake vortices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.