Abstract

The complex subsurface magnetic rope structure of a very flare-active isolated δ group (McMath 13043, July 1974) is studied by means of high-resolution evolutionary data from BBSO magnetic and velocity data. This group showed unusually fast evolution accompanied by a number of intense flares occurring on the neutral line of a δ spot, and provided an excellent opportunity to study the inherent relation of flare occurrence to changes of the magnetic configuration. We first examine the abnormal evolution of this group started by formation of a large, compact, reversed δ spot by squeezing of multipoles. The δ configuration was deformed by penetration into the opposite polarity umbra and its subsequent disappearance, decaying by rapid shear motions. Strong transverse fields over 4000 G were detected in the penumbrae and some umbral components. Combining these data with the August 1972 region, the evolution of these isolated δ groups is shown to decompose into two flare-associated elementary modes: (A) shearing produced by spot growth and (B) reduction of shear as spots disappear. We propose a model of an emerging twisted magnetic knot to explain the two modes and apply realistically to the present evolution. The inferred magnetic topological structure of this region consists of tightly twisted (sheet-like) knots and a long-winding twisted rope with an internally reversed loop and a hooked bottom struture. Their consecutive emergences are suggested to explain the abnormal evolution of this 5 group. This result indicates that the origin of the concentrated flare activity in these isolated δ groups may be traced to internal magnetic activity responsible for forming anomalous magnetic ropes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.