Abstract

The effect of changing 1st and 4th amino acid residues on beta-turn preference of tetrapeptide sequences was studied by use of CD spectra of th chromophoric derivatives, which have Dnp- and pNA-groups as the amino and carboxyl substituents, respectively. The effect was examined with the tetrapeptides having such sequences at the 2nd and 3rd positions as -L-Pro-L-Asn-, -L-Pro-Gly-, -L-Pro-D-Ala-, -L-Ala-D-Leu-, -L-Ala-L-Pro-, and -D-Ala-L-Pro-. The beta-turn preferences estimated from the CD intensities of the bands due to exciton interaction were found to depend largely on the configurations of the 1st and 4th amino acid residues. When 1st and 2nd (or 3rd and 4th) residues had the same configuration, decreased intensity of the CD band was observed even if the internal sequence had high beta-turn preference. Terminal Gly residues were favorable for the beta-turn conformation in many of the tetrapeptide sequences examined.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.