Abstract

Development of vascular tolerance to nitroglycerin (NTG) has been attributed to sulfhydryl (SH) depletion, guanylate cyclase desensitization, or both. Controversy regarding the precise contribution of these mechanisms may be due to variations in experimental design. To examine further the biochemical basis of NTG tolerance, norepinephrine (NE)-precontracted rat aortic rings were exposed to NTG (10(-5)M), which resulted in 84 +/- 6% relaxation. Other rings were first superfused with NTG (10(-6)M) and then contracted with NE. These rings showed a marked tolerance to the vasorelaxant effects of NTG (maximal relaxation 20 +/- 5%, n = 15, p < 0.001 vs. control rings). Similar tolerance to NTG was observed when the vascular rings were first superfused with acetylcholine (ACh 10(-6)M), indicating cross-tolerance between ACh and NTG. Treatment of NTG-tolerant rings with N-acetylcysteine (NAC) (10(-5)M) did not restore vascular smooth muscle (VSM) relaxation in response to NTG (maximal relaxation 23 +/- 5%, n = 8), suggesting that SH depletion may not be the basis of NTG tolerance in these experiments. Parallel sets of NTG-tolerant aortic rings were contracted with endothelin-1 (ET-1, n = 5) or the endothelium-derived relaxing factor (EDRF) synthase inhibitor NG-monomethyl L-arginine (L-NMMA, 10(-4)M, n = 8). In both ET-1- and L-NMMA-contracted rings, vascular relaxation in response to NTG was preserved (80 +/- 6 and 88 +/- 8% relaxation, respectively). Measurement of cyclic GMP in aortic rings showed marked accumulation on initial exposure of tissues to NTG (310 +/- 10 fmol/mg), whereas the NTG-tolerant rings showed much less cyclic GMP accumulation (48 +/- 29 fmol/mg). Rings contracted with L-NMMA or ET-1, but not NE, accumulated cyclic GMP when exposed to NTG (280 +/- 20 fmol/mg). These data indicate that NTG tolerance develops on exposure of vascular rings superfused with NTG or ACh and is probably not related to tissue SH depletion. Contraction of NTG-tolerant rings with ET-1 or L-NMMA restores NTG-mediated relaxation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call