Abstract

Abstract Over the last decade, several international thermalhydraulics benchmarking efforts have been carried out to support the development of the Generation IV supercritical water-cooled reactor (SCWR) concept. These benchmarking efforts aimed to assess the readiness of computer codes to predict the thermalhydraulics behavior of supercritical fluids for nuclear fuel assembly applications. The results from the benchmarking also shed light on knowledge gaps. Throughout the years, several advancements in this area have been achieved, resulting in relevant conclusions and observations. Furthermore, experimental campaigns have been carried out worldwide to further our knowledge on the thermalhydraulics of supercritical fluids. The nuclear industry uses the subchannel approach to study the thermalhydraulics behavior of nuclear fuel assemblies in detail. In Canada, the subchannel code advanced solution of subchannel equations in reactor thermalhydraulics—pressure velocity (ASSERT-PV) is the qualified code for subchannel applications. ASSERT-PV was modified to handle supercritical conditions, resulting in an interim code version. This publication presents relevant subchannel analyses using the interim supercritical version of ASSERT-PV for fuel assemblies cooled with supercritical fluids.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.