Abstract

A study is reported of the temperature dependences of the hyperfine (HF) interaction parameters in a ∼200-nm thick surface layer and in the bulk of macroscopic hexagonal ferrite crystals of the Sr-M type (SrFe12O19 and SrFe10.2Al1.8O19). The method used for the measurements is Mossbauer spectroscopy with simultaneous detection of gamma quanta, characteristic x-ray emission, and electrons, which permits direct comparison of the HF parameters in the bulk and the near-surface layers of a sample. As follows from the experimentally determined temperature dependences of the effective magnetic fields, the fields at the nuclei of the iron ions located in a ∼200-nm thick near-surface layer decrease with increasing temperature faster than those of the ions in the bulk. The transition to paramagnetic state in a ∼200-nm thick surface layer was found to occur 3° below the bulk Curie temperature. This offers the first experimental evidence for the transition to paramagnetic state in a surface layer of macroscopic ferromagnets to take place below the Curie temperature T c for the bulk of the crystal. It has been established that the transition temperature T c (L) of a thin layer at a depth L from the surface of a crystal increases as one moves away from the surface to reach T c at the inner boundary of the surface layer called critical. In the vicinity of T c one observes a nonuniform state, with the crystal being magnetically ordered in the bulk but disordered on the surface. The experimental data obtained were used to construct a phase diagram of surface and bulk states for macroscopic magnets near the Curie (or Neel) temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call