Abstract
AbstractThe influence of two mixing systems on the principal parameters of mycelial fermentations of Aspergillus niger, Fusicoccum amygdali Del. and Fusarium moniliforme Sheld. as well as their metabolite citric acid, fusicoccin and gibberellic acid production was analyzed from the viewpoint of flow energy distribution in a bioreactor.The growth and metabolite synthesis during fermentation was compared under different mixing conditions in the fermenter FU‐8 with a turbine mixing system (TMS) and a counterflow mixing system (CMS). It was found that the growth, productivity and respiration characteristics as well as the morphology of these cultures varied dependent on the mixing system and agitation regime used. The counterflow mixing system was more favourable for large agglomerates (F. amygdali) or soft pellets (A. niger) forming fungi, while the turbine mixing system was more effective for F. moniliforme growing in the form of small clumps and freely dispersed hyphae. Flow characteristics under different mixing conditions were analyzed in a model fermenter.The kinetic energy of flow fluctuations was measured in gassed and ungassed water and different fermentation broth systems by using a Stirring Intensity Measuring Device (SIMD‐F1). The difference of the energy values at different points was better expressed in the fermenter with a turbine mixing system in comparison with that having a counterflow mixing system. High viscous F. amygdali and A. niger broth provided higher energy values compared to water and low viscous F. moniliforme broth. It was observed that the intensity of growth and the intensity of the synthesis decreased at very high energy values, which was obviously connected to the influence of the irreversible shear stress on the mycelial morphology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.