Abstract

These studies make plain that the Shope papilloma virus induces the production of an arginase in rabbit squamous epithelium, and provide evidence that the information for the synthesis of the enzyme is derived from the virus rather than the rabbit. This form of induction is therefore different from that brought about by chemicals such as galactosides (36). Striking differences were shown between the physiochemical properties of Shope virus-induced arginase and other arginases of domestic and Kansas cottontail rabbits. The absence of a requirement for manganese suggests the mechanism of splitting off urea from arginine by papilloma arginase probably differs from that of previously described arginases. These findings (particularly the experiments in which it was demonstrated that papilloma growth could be greatly reduced by giving animals supplemental arginine in the presence of small amounts of the arginase inhibitor, canavanine) provide evidence that suggests the following mechanism of action for the virus: viral DNA introduces into rabbit epithelium the information for the synthesis of an arginase for which the cells have no control mechanism. The arginase depletes cellular arginine and, in turn, the synthesis of arginine-rich nuclear histones (2), thereby freeing the nucleus for greater synthetic activity (4, 35), which results in more rapid growth of the papilloma cells. Domestic rabbit papillomas induced with purified virus derived from wild rabbit papillomas were shown to contain an antigen which reacts immunologically like a wild rabbit antigen. It was distinct from the arginase, the protein coat of the virus, and the Vx-2 antigen. The presence of the wild rabbit antigen seems indicative of integration of the virus DNA in the host genome of the wild rabbit. Other incidental findings include the description of a simple method, accurate to within 1 per cent, for determining the partial specific volume of a protein, and the description of a modification of the Richards and Schachman method (9) enabling the determination of the molecular weight and homogeneity of a protein with as little as 0.25 mg and with an accuracy of 2 per cent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.