Abstract

Kisspeptin neurones in the arcuate nucleus play a pivotal role in the regulation of hypothalamic gonadotrophin-releasing hormone (GnRH) secretion in higher primates. To examine whether kisspeptin also influences the function of the primate pituitary directly, two experiments were performed in adult male rhesus monkeys. First, the distribution of kisspeptin-containing cells in the pituitary was described using fluorescence immunohistochemistry. Second, the secretion of non-gonadotrophin adenohypophysial hormones [growth hormone (GH), prolactin and thyroid-stimulating hormone (TSH)] and cortisol in response to i.v. kisspeptin administration was examined. Eight animals were deeply anaesthetised and transcardially perfused with 4% paraformaldehyde. Fluorescence immunohistochemistry was performed on 25-microm thick free-floating pituitary sections to localise immunopositive kisspeptin cells and to examine their relationship with immunostaining for luteinising hormone (LH), follicle-stimulating hormone, GH, prolactin, alpha-melanocyte-stimulating hormone (MSH), adrenocorticotrophic hormone (ACTH) and GnRH. Kisspeptin cells were found in the intermediate lobe of all animals and, in four monkeys, this neuropeptide was also observed in cells scattered in the periphery of the anterior lobe. Kisspeptin colocalised with alpha-MSH-immunopositive cells in the intermediate lobe and, in 50% of the monkeys, with ACTH-immuunopositive cells in the periphery of the adenohypophysis. There was no evidence for colocalisation of kisspeptin with gonadotrophs, somatotrophs or lactotrophs. Beaded kisspeptin axons were observed in the neural lobe. In addition, assay of plasma samples that had been collected for a previous study documenting kisspeptin-10-induced LH release in male monkeys revealed that kisspeptin administration failed to influence circulating concentrations of GH, prolactin, TSH and cortisol. Release of all four of these non-gonadotrophic hormones, however, was stimulated markedly by NMDA, which is considered to act centrally. Although the morphological findings obtained in the present study are consistent with the notion that kisspeptin may act directly at the level of the pituitary, the nature of such an action remains to be defined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.