Abstract
The ablation of impurity pellets in tokamak and stellarator plasmas is investigated. Different mechanisms for shielding the heat fluxes from the surrounding plasma to the pellet surface are discussed. A model for impurity pellet ablation is developed that can account for both neutral and electrostatic shielding. It is shown that the experimental values of the impurity pellet ablation rate are well described by the neutral gas shielding model over a wide range of plasma temperatures and densities. Taking into account the electrostatic shielding leads to worse agreement between the predictions of the model and the experimental data; this result still remains unclear. Scaling laws are obtained that allow one to estimate the local ablation rate of impurity pellets made of various materials over a wide range of plasma parameters in the neutral gas shielding model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.