Abstract

Abstract This article reviews experiments to determine the structure of the superconducting gap in the iron-based superconductors. It focuses on insights provided by measurements of the temperature dependence of magnetic penetration depth but also discusses the information provided by other measurements especially thermal conductivity. The article includes background theory on the types of gap structure suggested for the iron-based superconductors as well as the general theory of penetration depth in conventional and unconventional superconductors. The effect of impurity scattering on each candidate gap structure is important for the interpretation of data and so will also be discussed. Penetration depth data for single crystals of the following compounds is reviewed: SmFeAsO0.8F0.2, FeTe0.5Se0.5, LaFePO, KFe2As2 and BaFe2(As0.67P0.33)2 along with discussion on related materials such as K- and Co-doped BaFe2As2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.