Abstract
The electrical potential difference (PD) in the rat proximal convoluted tubule was investigated in vivo as a function of distance from the glomerulus. The PD was found to be invariably negative (up to -4.5 mV) in the earliest segments (less than 0.5 mm from the glomerulus) and rose to positive values (+2 to +4) in the later segments (1 mm beyond the glomerulus). This change in PD correlated with the bubule fluid-to-plasma (TF/P) chloride ratios, which rose from unity in the early segments to approximately 1.3 in the late. Corresponding changes in PD and chloride ratios could be elicited by single-nephron stop-flow techniques in the early segments. Luminal perfusion techniques demonstrated a direct relationship between PD and tubule fluid chloride concentration. Acetazolamide was found to significantly reduce both late proximal PD (less than +2 mV) and TF/P chloride ratios (less than 1.06). Split-drop studies demonstrated that the negative PD in the early proximal tubule was dependent on the presence of glucose and alanine and the absence of a chloride gradient, whereas in the late proximal tubule under the same conditions the PD was not significantly different from zero. In this segment of the nephron the positive PD in free flow appeared to result from the chloride diffusion potential generated by preferential HCO3 reabsorption. These results provide further demonstration of intrinsic differences in the transport properties along the length of the proximal convoluted tubule.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.