Abstract

Li[Ni0.4Mn0.4Co0.2]O2 (NMC442)/graphite pouch cells containing various electrolyte additives, either singly or in combination, were studied using cycling experiments up to 4.4 and 4.5 V coupled with simultaneous electrochemical impedance spectroscopy (EIS) measurements. The impedance of most cells increased dramatically at 4.4 and 4.5 V, but was nearly reversible over one cycle. However, during continued cycling, the impedance of all cells slowly increased at all potentials. Electrolyte additives were found to dramatically affect this behavior. The impacts of adding prop-1-ene-1,3-sultone (PES), vinylene carbonate (VC), triallyl phosphate (TAP), methylene methane disulfonate (MMDS), ethylene sulfate (DTD) and/or tris(-trimethyl-silyl)-phosphite (TTSPi) to 1M LiPF6 ethylene carbonate:ethyl methyl carbonate (EC:EMC) electrolyte were studied. PES-containing cells had dramatically lower impedance and better capacity retention than VC and TAP-containing cells during both 4.4 and 4.5 V experiments. When MMDS, DTD and/or TTSPi were added in combination with PES, the performance was improved further. Finally, continuous charge-discharge cycling was compared to cycling with a 24-hour hold applied at the top of charge at 4.4 V. The high voltage hold led to severe impedance growth which could be partially overcome through the use of optimal additive combinations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.