Abstract
The application of bonded repairs and reinforcements to aircraft components places an emphasis on adherend surface treatment procedures because these treatments can significantly change bond strength and durability. A typical minimum treatment sequence for Alclad 2024-T3 aluminium alloy adherends includes a solvent degrease, an abrasion with a Scotchbrite ® pad, a clean with a methyl-ethyl-ketone (MEK) soaked tissue and a grit-blast with 45 μm alumina powder. The adherends are treated with γ-glycidoxy-propyl-trimethoxy-silane (γ-GPTS) coupling agent then bonded with an epoxy film adhesive. The composition of the adherent, the bond durability and the locus of fracture were examined at several stages of the adherent surface treatment. Boeing wedge tests show that grit-blasting the adherends creates a more durable adhesive bond than the Scotchbrite ®/MEK treatment and that the application of γ-GPTS improves bond durability in both cases. XPS has shown that the cleaning sequence decreases the concentration of hydrocarbon contaminant on the grit-blasted adherend to an average thickness of less than 1.5 nm. XPS analyses of the fracture surfaces indicates that for the grit-blast, grit-blast plus γ-GPTS and Scotchbrite ®/MEK plus γ-GPTS treatments, failure occurs primarily in the oxide film, whereas for the Scotchbrite ®/MEK treatment failure occurs at the adhesive/oxide interface possibly due to weakness induced by contaminant. XPS measurements show that a γ-GPTS overlayer retards the growth of the oxide on aluminium in humid air, until the γ-GPTS overlayer is desorbed. The improved bond durability with the coupling agent may be due to the inhibition of hydration sites on this oxide surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.