Abstract

Endoglucanase I from the filamentous fungus Trichoderma reesei catalyses hydrolysis and glycosyl-transfer reactions of cello-oligosaccharides. Initial bond-cleaving frequencies determined with 1-3H-labelled cello-oligosaccharides proved to be substrate-concentration-dependent. Using chromophoric glycosides and analysing the reaction products by h.p.l.c., kinetic data are obtained and, as typical for an endo-type depolymerase, apparent hydrolytic parameters (kcat., kcat./Km) increase steadily as a function of the number of glucose residues. At high substrate concentrations, and for both free cellodextrins and their aromatic glycosides, complex patterns (transfer reactions) are, however, evident. In contrast with the corresponding lactosides and 1-thiocellobiosides, and in conflict with the expected specificity, aromatic 1-O-beta-cellobiosides are apparently hydrolysed at both scissile bonds, yielding the glucoside as one of the main reaction products. Its formation rate is clearly non-hyperbolically related to the substrate concentration and, since the rate of D-glucose formation is substantially lower, strong indications for dismutation reactions (self-transfer) are again obtained. Evidence for transfer reactions catalysed by endoglucanase I further results from experiments using different acceptor and donor substrates. A main transfer product accumulating in a digest containing a chromophoric 1-thioxyloside was isolated and its structure elucidated by proton n.m.r. spectrometry (500 MHz). The beta 1-4 configuration of the newly formed bond was proved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.