Abstract

We report the vibrational spectra of o-fluorophenylacetylene (OFPA), m-fluorophenylacetylene (MFPA), and p-fluorophenylacetylene (PFPA) in the electronically excited S1 and cationic ground D0 states. These new data show that the relative location of the fluorine atom with respect to the acetylenic group can influence the transition energy and molecular vibration. The adiabatic ionization energies of these structural isomers follow the order: PFPA < OFPA < MFPA. It is found that the molecular geometries of these molecules in the D0 state resemble those in the S1 state. Detailed spectral analysis suggests that the in-plane ring deformation vibrations are slightly "harder" in the D0 state than the corresponding ones in the S1 state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.