Abstract

The failure strain level in a single point incremental forming (SPIF) process is found to be much higher than that in the traditional stamping process. Based on the assumption that forming limits in SPIF are dominated by fracture failure, the Oyane ductile fracture criterion is introduced in this paper to predict the fracture initiation site, and hence the forming limit, given the stress and strain values obtained from finite element simulations. The predicted results compare well with those obtained from the SPIF experiments. Furthermore, this fracture criterion is used to study the size effects in SPIF. Analytical equations are derived to comprehensively consider the effects of design and process parameters on sheet formability including sheet thickness, tool diameter, and incremental depth. Previously published experimental data is used to verify the feasibility of the proposed size effect equation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.