Abstract

We have studied a variety of different periodic and quasiperiodic superconducting networks both theoretically and experimentally with an eye toward seeing whether quasicrystalline structures have physical properties distinct from either random or periodic structures. We are also interested in the question of whether there can be a sense of “commensurability” of a particle or fluxoid arrangement on a quasicrystalline substrate. Experimentally we find cusp-like dips in −δ T c( H) for the quasicrystalline networks at H H 1 = n + mσ , where H 1 is the field which would put 1 flux quanta in every tile an d σ is the irrational number which characterizes the inflation symmetry of the network. This suggests that the commensurate states are associated with the inflation properties of the network. Using several theoretical models and Monte Carlo simulated annealing we have found that the ground state configurations are particular fillings of inflated tilings. We then redefine commensurability in terms of inflation symmetry and indicate how this applies to periodic and quasicrystalline networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.